Control of Iron Oxide Nanoparticle Clustering Using Dual Solvent Exchange
نویسندگان
چکیده
منابع مشابه
Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems
The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostruct...
متن کاملRemoval of Cd (II) in Water Samples Using Modified Magnetic Iron Oxide Nanoparticle
Background: Heavy metals, even at low concentrations, are harmful to human health and environment. Cadmium as a heavy metal is highly toxic and can cause serious threat to living organisms. This research was designed to evaluate the adsorption potential of modified magnetic iron nanoparticles by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol ligand for the removal of cadmium ions from water solu...
متن کاملOptimization of Iron Oxide Nanoparticle Preparation for Biomedical Applications by Using Box-Behenken Design
Magnetic nanoparticles can bind to different drug delivery systems and can be used for drug targeting to a specific organ by using an external magnetic field as well as used in hyperthermia by heating in alternating magnetic fields. The characteristics of iron oxide nanoparticles are significantly affected by particle size, shape and zeta potential, among which the particle size plays the most ...
متن کاملEvaluation of iron oxide nanoparticle biocompatibility
Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite γ-Fe(2)O(3) nanoparticles showed high structural quality. The particles showed a homogeneous sp...
متن کاملPolyvalent oligonucleotide iron oxide nanoparticle "click" conjugates.
We have utilized the copper-catalyzed azide-alkyne reaction to form a dense monolayer of oligonucleotides on a superparamagnetic nanoparticle core. These particles exhibit the canonical properties of materials densely functionalized with DNA, which can be controlled by modulating the density of oligonucleotides on the surface of the particles. Furthermore, like their Au analogues, these particl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Magnetics Letters
سال: 2016
ISSN: 1949-307X,1949-3088
DOI: 10.1109/lmag.2015.2508006